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LETTER TO THE EDITOR 

Infrared Green function for the Coulomb interaction? 

E B Manoukian 
Royal Military College of Canada, Kingston, Ontario K7L 2W3, Canada 

Received 6 August 1985 

Abstract. Fradkin’s representation for the Green function, in an external potential, which 
has been very useful in field theory, is used to give an intuitive approach in the derivation 
of the infrared Green function for the Coulomb interaction describing the propagation of 
the charged particles before and after the collision. The solution is compared with the 
exact expression for the infrared Green function obtained by Schwinger. 

It is well known that long range interactions, such as the Coulomb interaction, lead 
to so-called modified free plane waves at large distances as a result of the slow decrease 
of the potentials at such distances (cf Landau and Lifschitz 1965) (for modern treatments, 
cf Dollard 1964, 1973, Weinberg 1965, Manoukian and PrugoveEki 1971, Schweber 
1973; see also Kulish and Faddeev 1970, Gervais and Zwanziger 1980, Zwanziger 
1975, Korthals Altes and de Rafael 1976, Manoukian 1984). This property is, of course, 
reflected in the modification of the free Green functions to infrared modified Green 
functions describing the propagation of the pa.-+icles before and after the collision. 
The latter means that the particles feel the presence of the potential tail even at large 
distances. The purpose of this letter is to give an extremely simple and an intuitive 
approach to the derivation of the infrared Green function for the Coulomb interaction 
by using Fradkin’s elegant representation (Fradkin et a1 1970 and references therein) 
for a Green function in an external potential. This method has been very useful in 
field theory (Fradkin et a1 1970 and references therein). The solution is then compared 
with the exact expression for the Green function as obtained long ago by Schwinger 
(1964) based on detailed and complex analysis. 

We first consider the free Green function Go(x-x’) which satisfies the differential 
equation: 

(-id/dt-V2/2m)Go(x-x’)= S4(x-x‘), (1) 

whose solution is given by 

exp[ik(x -xf)]  Go( x - x ’) = [ 0 & + + O  
( 2 ~ ) ~  (-ko+k’/2m -is)’ 

(dk) = dko dkl dk2 dk3, kx = k x - koxo, xo = t, or 

exp[ik. (x - x’)] exp[-ik2(xo - x0’)/2m], for xo > xo’, (3) 
d3k 

Go(x - x f )  = i [ 
Go( x - x’) = 0, for xo < xo‘. (4) 
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In the presence of a potential V(x), the exact Green function G(x, x') satisfies the 
equation 

(-i a/ar -V2 /2m+ V(x))G(x, x') = a4(x-x') ,  ( 5 )  

where we suppose that 

V(x) = o(lxl-"), 1x1 +Co. 

For a > 1, the potential is termed as short range (see equation (14)). The interesting 
case is when a = 1, corresponding to the Coulomb interaction. 

It is convenient to introduce the transform 

where G(x, p )  satisfies the differential equation 

( -po+p2/2m -ip.  V / m  -V2/2m + V(x))G(x, p )  = 1 .  (8) 

For a free particle, G(x,p)  is independent of x (no scattering). Accordingly, we 
will seek an expression for the infrared Green function Go(p) which is independent 
of x, and at the same time, correctly takes into account the slow decrease of the 
Coulomb potential at large distances. To this end, we write (Fradkin er a1 1970) 

G(x ,p )= i  [o~dvexp[ - iv ( -p0+p2 /2m- ir ) lF(v ) .  

The parameter v has the dimension of time. Accordingly, we expect that if p is the 
momentum of a particle emerging from the scattering centre, then the particle is 
essentially free, and we have the following approximate relation holding after (and 
before) the collision (e.g. Dollard and Vel0 1966) based on a dimensional argument: 

Ixl/ v - IPI/ m, v+m. (10) 

Therefore, to obtain an x-independent (no scattering) solution of (8), we replace x in 
V(x) - Vasym.(lxl), for IxJ+co, by v I p ( / m .  Equation (8) then leads to the elementary 
differential equation ( F ( 0 )  = 1) 

i a F ( v ) / a v =  Vasym.(vlpl/m)F(v), V - P C o ,  (11) 

whose solution is 

F(v) -ex~(-c[  dvVasym.(vIPI/m)) v + a .  (12) 

Hence from equation (6), with Vasym.(Jxl) = Clxl-", we have 

From (13) and (9) we obtain the modified free (infrared) Green function (in p-space) 

[ ( - P O  +p2/2m)-' ,  a > l  

(14) 
a = 1. 
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Hence, for short range interactions, the free Green function is not modified, but a 
similar logarithmic factor arises for the Coulomb interaction. For the latter V ( x )  = 
Ze2/(xl, and from (14) 

This should be compared with the exact infrared Green function (near the energy 
shell) obtained for example in Schwinger (1964): 

and the latter is generally of order 1. The propagator Go( p )  describes the propagation 
of a particle before and after the collision. It is a function of the coupling Ze’. That 
is, the particles feel the presence of the interaction even at large distances. On the 
other hand, for short range potentials (including the Yukawa potential) the free 
propagators are not modified (see equation (14)). 
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